interpret
- Interpretation with gradient maps¶
This functionality allows interpreting pretrained models by computing a mean saliency map across a group of images. It takes as input MAPS-like model folders.
Prerequisites¶
Please check which preprocessing needs to
be performed in the maps.json
file of the MAPS. If it has
not been performed, execute the preprocessing pipeline as well as clinicadl
extract
to obtain the tensor versions of the images.
Running the task¶
This task can be run with the following command line:
clinicadl interpret [OPTIONS] INPUT_MAPS_DIRECTORY DATA_GROUP NAME
INPUT_MAPS_DIRECTORY
(Path) is a path to the MAPS folder containing the model which will be interpreted.DATA_GROUP
(str) is a prefix to name the files resulting from the interpretation task.NAME
(str) is the name of the saliency map task.
data group consistency
For ClinicaDL, a data group is linked to a list of participants / sessions and a CAPS directory.
When performing a prediction, interpretation or tensor serialization the user must give a data group.
If this data group does not exist, the user MUST give a caps_path
and a tsv_path
.
If this data group already exists, the user MUST not give any caps_path
or tsv_path
, or set overwrite to True.
Optional arguments:
- Computational resources
--gpu / --no-gpu
(bool) Uses GPU acceleration or not. Default behaviour is to try to use a GPU. If not available an error is raised. Use the option--no-gpu
if running in CPU.--n_proc
(int) is the number of workers used by the DataLoader. Default:2
.--batch_size
(int) is the size of the batch used in the DataLoader. Default:2
.
- Model selection
--selection_metrics
(List[str]) is a list of metrics to find the best models to evaluate. Default will predict the results for best model based on the loss only.
- Data management
--participants_tsv
(Path) is a path to a directory containing one TSV file per diagnosis (see output tree of getlabels). Default will use the same participants as those used during the training task.--caps_directory
(Path) is the path to a CAPS hierarchy. Default will use the same CAPS as during the training task.--multi_cohort
(bool) is a flag indicated that multi-cohort classification is performed. In this case,caps_directory
andtsv_path
must be paths to TSV files.--diagnoses
(List[str]) iftsv_file
is a split directory, then will only load the labels wanted. Default will look for the same labels used during the training task.
- Other options
--target_node
(int) is the node the gradients explain. By default, it will target the first output node.--save_individual
(bool) is an option to save individual saliency maps in addition to the mean saliency map.
Outputs¶
Results for the DATA_GROUP
level are stored in the results folder given by INPUT_MAPS_DIRECTORY
, according to
the following file system:
<maps_directory>
├── split-0
├── ...
└── split-<split>
└── best-<metric>
└── <data_group>
└── interpret-<name>
├── mean_<mode>-<k>_map.pt
└── sub-<i>_ses-<j>_<mode>-<k>.pt
mean_<mode>-<k>_map.pt
is the tensor of the mean saliency map for modek
across the data set used (always saved),sub-<i>_ses-<j>_<mode>-<k>.pt
is the tensor of the saliency map for participanti
, sessionj
and mode_idk
(saved only if flag--save_individual
was given).